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Abstract. The statistical properties of the bid-ask spread of a frequently traded Chinese stock listed on
the Shenzhen Stock Exchange are investigated using the limit-order book data. Three different definitions
of spread are considered based on the time right before transactions, the time whenever the highest buying
price or the lowest selling price changes, and a fixed time interval. The results are qualitatively similar no
matter linear prices or logarithmic prices are used. The average spread exhibits evident intraday patterns
consisting of a big L-shape in morning transactions and a small L-shape in the afternoon. The distributions
of the spread with different definitions decay as power laws. The tail exponents of spreads at transaction
level are well within the interval (2, 3) and that of average spreads are well in line with the inverse cubic
law for different time intervals. Based on the detrended fluctuation analysis, we found the evidence of long
memory in the bid-ask spread time series for all three definitions, even after the removal of the intraday
pattern. Using the classical box-counting approach for multifractal analysis, we show that the time series
of bid-ask spread do not possess multifractal nature.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.75.Da Sys-
tems obeying scaling laws – 05.45.Df Fractals

1 Introduction

The continuous double auction (CDA) is a dominant mar-
ket mechanism used to store and match orders and to fa-
cilitate trading in most modern equity markets [1]. In most
of the order driven markets, there are two kinds of basic
orders, called market orders and limit orders. A market or-
der is submitted to buy or sell a number of shares at the
market quote which results in an immediate transaction,
while a limit order is placed to buy (or sell) a number of
shares below (or above) a given price. All the limit orders
that fail to result in an immediate transaction are stored
in a queue called limit-order book. Buy limit orders are
called bids while sell limit orders are called asks or offers.
Best bid price b(t) and best ask (or best offer) price a(t)
are the highest buying price and the lowest selling price
at any time t in the limit-order book. The best bid (or
ask) is called the same best for buy (or sell) orders, while
the best ask (or bid) is called the opposite best for buy (or
sell) orders. A limit order causes an immediate transac-
tion if the associated limit price penetrates the opposite
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best price. Such kind of limit orders are called marketable
limit orders or effective market orders and other limit or-
ders are termed effective limit orders. In the Chinese stock
market, only limit orders were permitted in the placement
of orders before July 1, 2006.

It is a dynamic process concerning the limit-order
book. Effective limit orders accumulate in the book while
effective market orders cause transactions and remove the
limit orders according to their prices and the times they
arrive. Effective limit orders can also be removed by can-
celation for a variety of reasons. Unveiling the dynamics
of order placement and cancelation will deepen our under-
standing of the microscopic mechanism of price formation
and allow us to reproduce remarkably many key features
of common stocks such as the probability distribution of
returns [2–9].

The difference between best-ask price and best-bid
price, s(t) = a(t) − b(t), is the bid-ask spread. Numerous
work has been carried out to explore the different com-
ponents of the bid-ask spread [10,11]. On the other hand,
there are several groups studying the statistical proper-
ties of the bid-ask spread time series for different stock
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markets. Farmer et al. reported that the bid-ask spread
defined by ln[a(t)]−ln[b(t)] on the London Stock Exchange
follows a power-law distribution in the tail

P (> s) ∼ s−ζ , (1)

where the exponent ζ = 3.03 ± 0.41 ranging from 2.4 to
3.9 [12,9], which is well consistent with the inverse cubic
law [13,14,3]. In addition, Mike and Farmer found that
the spread possesses long memory with the Hurst index
being 0.75 < H < 0.85 [9]. Plerou et al. adopted the 116
most frequently traded stocks on the New York Stock Ex-
change over the two-year period 1994–1995 to investigate
the coarse-grained bid-ask spread over a time interval ∆t
and found that the tail distribution decays as a power law
with a mean tail exponent of ζ = 3.0± 0.1 and the spread
after removing the intraday pattern exhibits long memory
with H = 0.73 ± 0.01 [15]. Qualitatively similar results
were found by Cajueiro and Tabak in the Brazilian equity
market where the mean tail exponent is ζ = 2.18 ranging
from 1.18 to 2.97 and the Hurst index is H = 0.68 ± 0.08
varying from 0.52 to 0.89 [16]. In contrast, Wyart et al.
reported an exception for the Paris Stock Exchange where
the spread distribution is not inconsistent with an expo-
nential distribution [17].

Due to the fast development of the economy of China
and the increasing huge capitalization of its stock market,
more concerns are attracted to study the emerging Chi-
nese stock market. In order to reduce the market risks and
speculation actions, the Chinese stock market adopts t+1
trading system, which does not allow traders to sell the
stocks bought on the same day, and no market orders were
permitted until July 1, 2006, which may however consume
the liquidity of the market and cause the spread to show
different properties when compared to other stock mar-
kets. In this work, we investigated the probability distri-
bution, long memory, and presence of multifractal nature
of the bid-ask spread using limit-order book data on the
Shenzhen Stock Exchange (SZSE) in China.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe in brief the trading rules of the Shen-
zhen Stock Exchange and the database we adopt. Section 3
introduces three definitions of the bid-ask spread and in-
vestigates the intraday pattern in the spread. The cumu-
lative distributions of the spreads for different definitions
are discussed in Section 4. We show in Section 5 the long
memory of the spread based on the detrended fluctuation
analysis (DFA) quantified by the estimate of the Hurst
index. In Section 6, we perform multifractal analysis on
the bid-ask spread time series. The last section concludes.

2 SZSE trading rules and the data set

Our analysis is based on the limit-order book data of a liq-
uid stock listed on the Shenzhen Stock Exchange. SZSE
was established on December 1, 1990 and has been in op-
eration since July 3, 1991. The securities such as stocks,
closed funds, warrants and Lofs can be traded on the Ex-
change. The Exchange is open for trading from Monday to

Friday except the public holidays and other dates as an-
nounced by the China Securities Regulatory Commission.
With respect to securities auction, opening call auction
is held between 9:15 and 9:25 on each trading day, fol-
lowed by continuous trading from 9:30 to 11:30 and 13:00
to 15:00. The Exchange trading system is closed to orders
cancelation during 9:20 to 9:25 and 14:57 to 15:00 of each
trading day. Outside these opening hours, unexecuted or-
ders will be removed by the system. During 9:25 to 9:30
of each trading day, the Exchange is open to orders rout-
ing from members, but does not process orders or process
cancelation of orders.

Auction trading of securities is conducted either as a
call auction or a continuous auction. The term “call auc-
tion” (from 9:15 to 9:25) refers to the process of one-time
centralized matching of buy and sell orders accepted dur-
ing a specified period in which the single execution price is
determined according to the following three principles: (i)
the price that generates the greatest trading volume; (ii)
the price that allows all the buy orders with higher bid
price and all the sell orders with lower offer price to be
executed; and (iii) the price that allows either buy orders
or sell orders to have all the orders identical to such price
to be executed.

The term “continuous auction” (from 9:25 to 11:30 and
from 13:00 to 15:00) refers to the process of continuous
matching of buy and sell orders on a one-by-one basis and
the execution price in a continuous trading is determined
according to the following principles: (i) when the best ask
price equals to the best bid price, the deal is concluded at
such a price; (ii) when the buying price is higher than the
best ask price currently available in the central order book,
the deal is concluded at the best ask price; and (iii) when
the selling price is lower than the best bid price currently
available in the central order book, the deal is executed
at the best bid price. The orders which are not executed
during the opening call auction automatically enter the
continuous auction.

The tick size of the quotation price of an order for A
shares1 is RMB 0.01 and that for B shares2 is HKD 0.01.
Orders are matched and executed based on the principle
of price-time priority which means priority is given to a
higher buy order over a lower buy order and a lower sell
order is prioritized over a higher sell order. The order se-
quence which is arranged according to the time when the
Exchange trading system receives the orders determines
the priority of trading for the orders with the same prices.

1 A shares are common stocks issued by mainland Chinese
companies, subscribed and traded in Chinese RMB, listed in
mainland Chinese stock exchanges, bought and sold by Chinese
nationals. A-share market was launched in 1990.

2 B shares are issued by mainland Chinese companies,
traded in foreign currencies and listed in mainland Chinese
stock exchanges. B shares carry a face value denominated in
Renminbi. The B Share Market was launched in 1992 and was
restricted to foreign investors before February 19, 2001. B share
market has been opened to Chinese investors since February
19, 2001.
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Table 1. A segment of the limit-order book.

1400 0 939 0015 11.33 11.34 0 31
1000 11.48 939 0016 11.33 11.34 0 29
400 11.65 939 0311 11.33 11.34 0 29
400 0 939 0317 11.33 11.34 0 30

1000 11.33 939 0365 11.33 11.34 0 26
6000 11.33 939 0408 11.33 11.34 6000 23

We studied the data from the limit-order book of the
stock SZ000001 (Shenzhen Development Bank Co., LTD)
in the whole year of 2003. The limit-order book recorded
high-frequency data whose time stamps are accurate to
0.01 s. The size of the data set is 3 925 832, including 12 965
invalid orders, 122 034 order submissions and cancelations
in the opening call auction, 47 576 order submissions and
cancelations during the cooling period (9:25–9:30), and
3 743 257 valid events during the continuous auction. In
continuous auction, there are 317 015 cancelations of buy
orders and 274 929 cancelations of sell orders, 889 700 ef-
fective market orders, and 2 261 613 effective limit orders.
Table 1 shows a segment taken from the limit-order book
recorded on 2003/07/09. The seven columns stand for or-
der size, limit price, time, best bid, best ask, transaction
volume, and buy-sell identifier (which identifies whether a
record is a buy order, a sell order, or a cancelation). For
a cancelation record, the limit price is set to be zero.

3 Defining bid-ask spread

The literature concerning the bid-ask spread gives differ-
ent definitions [6,9–12,15–19]. In this section, we discuss
three definitions according to sampling time when best bid
prices and best ask prices are selected to define the spread.
Some definitions are based on the transaction time, while
the others are based on the physical time. The latter
scheme is actually a coarse-graining of the data within
a given time interval.

3.1 Definition I

The first definition of the bid-ask spread used in this work
is the absolute or relative difference between the best ask
price and the best bid price right before the transaction,
that is,

s(t) = a(t) − b(t) (2a)

for absolute difference or

s(t) = log10[a(t)] − log10[b(t)] (2b)

for relative difference. This was used to analyze the stocks
on the London Stock Exchange [9,12]. The size of the
spread time series is 895 606.

3.2 Definition II

The best ask price or the best bid price may change due
to the removal of all shares at the best price induced by an

effective market order, or the placement of an limit order
inside the spread, or the cancelation of all limit orders at
the best bid/ask price. Hence the bid-ask spread does not
always change when a transaction occurs, and it never-
theless changes without transaction. This suggests to in-
troduce an alternative definition of the spread which con-
siders the absolute or relative difference between the best
bid price and the best ask price whensoever it changes.
The expressions of definition II are the same as those in
equation (2) except that they have different definitions for
the time t. The size of the spread time series is 142 913.

3.3 Definition III

Obviously, the time in the first two definitions are on the
basis of “event”. An alternative definition considers the
average bid-ask spread over a time interval ∆t [20]. In
this definition, the bid-ask spread is the average difference
between the best ask and the best bid when transactions
occur over a fixed time interval [15]:

s(t) =
1
N

N∑

i=1

s(ti), s(ti) = a(ti) − b(ti), (3)

where ti’s are the time moments of the N transactions
occur in the interval (t − ∆t, t] and N is a function of t
and ∆t. We use ∆t = 1, 2, 3, 4, and 5 min to calculate
the average spreads.

3.4 Intraday pattern

In most modern financial markets, the intraday pattern
exists extensively in many financial variables [21–23], in-
cluding the bid-ask spread [20]. The periodic pattern has
significance impact on the detection of long memory in
time series [24]. To the best of our knowledge, the investi-
gation of the presence of intraday pattern in the spreads
of Chinese stocks is lack.

Figure 1 shows the autocorrelation function
〈s(t)s(t + �)〉 as a function of the time lag � for the
average bid-ask spread calculated from definition III with
linear best bids and asks. We note that the results are
very similar when logarithmic prices are adopted in the
definition. We see that there are spikes evenly spaced
along multiples of 245 min, which is exactly the time span
of one trading day. What is interesting is that Figure 1
indicates that the average spread also possesses half-day
periodicity.

In order to quantify the intraday pattern, we introduce
a variable A(t), which is defined as the average bid-ask
spread at time t for all the trading days, that is,

A(t) =
1
M

M∑

j=1

sj(t), (4)

where M is the number of trading days in the data set and
sj(t) is the bid-ask spread at time t of day j. The spread
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Fig. 1. Autocorrelation function 〈s(t)s(t + �)〉 of the average
bid-ask spread calculated from definition III with the time in-
terval ∆t = 1 min. Note that one trading day contains 245
trading minutes in the Chinese stock market.

S(t) after removing the intraday pattern reads [15]

S(t) = s(t)/A(t). (5)

Figure 2 illustrates the intraday pattern of the bid-ask
spread with ∆t = 1 minute. The overall plot shows an
evident L-shaped pattern, which is consistent with the
one-day periodicity shown in the autocorrelation function
in Figure 1. After the opening call auction, the spread
A(t) widens rapidly and reaches its maximum 0.0183
at the end of the cooling auction (9:30)3. Then it de-
creases sharply in fifteen minutes and becomes flat at a
level of 0.0112 ± 0.0008 afterwards till 11:30. At the be-
gin of continuous auction in the afternoon, A(t) abruptly
rises to 0.0133 and drops down to a stable level within
about ten minutes which maintains until the closing time
15:00. Therefore, there are two L-shaped patterns each
day, which suggests that the wide spread is closely related
to the opening of the market. The intraday pattern makes
no difference when we use ∆t = 2, 3, 4, and 5 min.

4 Probability distribution

The cumulative distributions of the bid-ask spread of
stocks in many stock markets decay as power laws with
the tail exponent close to 3 for the major western mar-
kets [9,12,15] except for the Paris Stock Exchange [17]
and much smaller and more heterogeneous in an emerg-
ing market [16]. Similar power-law behavior is found in
the Chinese stock market. Figure 3 presents the comple-
mentary cumulative distribution P (�s) of the spreads us-
ing definition I and II, where linear prices are used. Since
the minimum spread equals to the tick size 0.01, the ab-
scissa is no less than −2 in double logarithmic coordi-
nates and P (�0.01) = 1 for both definitions. The propor-
tion of s = 0.01 in the first definition is much greater

3 In 2003, there were three best prices at each side disposed
in 9:25 and remained unchanged during the cooling period.
Hence, the spreads shown in Figure 2 during this period are
virtually genrated according to the trading mechanism.
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Fig. 2. Intraday pattern in the bid-ask spread with ∆t = 1
min. The spread reaches its maximum at the end of the cooling
period at 9:30.
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than in the second definition such that the P (�s) for
the second definition drops abruptly for small spreads s.
The two distributions decay as power laws with exponents
ζI = 2.57 ± 0.06 for definition I and ζII = 2.30 ± 0.05
for definition II. When logarithmic prices are utilized,
the spreads also follow power-law tail distributions with
ζI = 2.67 ± 0.03 for definition I and ζII = 2.42 ± 0.04 for
definition II. Not much difference in the corresponding tail
exponents ζI and ζII was found for logarithmic and linear
prices.

Figure 4 illustrates the complementary cumulative dis-
tributions of the average spreads over time interval ∆t =
1, 2, 3, 4, and 5 min calculated from definition III with
linear prices. The average spreads have power-law tails
with the exponents equal to ζIII,1 = 2.99 ± 0.04, ζIII,2 =
3.00 ± 0.04, ζIII,3 = 3.00 ± 0.05, ζIII,4 = 2.95 ± 0.05,
and ζIII,5 = 2.97 ± 0.06. Similarly, for logarithmic prices,
we find similar power-law tail distributions with ζIII,1 =
3.07 ± 0.06, ζIII,2 = 2.95 ± 0.05, ζIII,3 = 3.00 ± 0.04,
ζIII,4 = 2.97 ± 0.07, and ζIII,5 = 2.98 ± 0.07. We find
that all the tail exponents ζIII,∆t for both linear and loga-
rithmic prices are very close to three and are independent
to the time interval ∆t, showing a nice inverse cubic law.
This is well in agreement with the results in the NYSE
case for ∆t = 15, 30, and 60 min [15].
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Fig. 4. Empirical complementary cumulative distributions of
the average spreads calculated from definition III with time
intervals ∆t = 1, 2, 3, 4, and 5 min using linear prices. The
markers represent the real data and the solid lines are the best
fits in the scaling ranges. The curves with ∆t > 1 have been
translated vertically for clarity.

There are also significant discrepancies. Comparing
the cumulative distributions in Figure 4 and that on the
NYSE [15], significant differences are observed. The dis-
tribution of the spreads on the SZSE decays much faster
than that on the NYSE for small spreads. In other words,
the proportion of small spreads is much larger on China’s
SZSE. Possible causes include the absence of market or-
ders, no short positions, the maximum percentage of fluc-
tuation (10%) in each day, and the t + 1 trading mecha-
nism in the Chinese stock markets on the one hand and
the hybrid trading system containing both specialists and
limit-order traders in the NYSE on the other hand. The
exact cause is not clear for the time being, which can how-
ever be tested when new data are available after the intro-
duction of market orders in July 1, 2006. Moreover, the
PDFs in SZSE drop abruptly after the power-law parts
for the largest spreads, which is not observed in the NYSE
case [15].

5 Long memory

Another important issue about financial time series is the
presence of long memory, which can be characterized by
its Hurst index H . If H is significantly larger than 0.5 the
time series is viewed to possess long memory. Long mem-
ory can be defined equivalently through autocorrelation
function C(�) ∼ �−γ and the power spectrum p(ω) ∼ ω−η,
where the autocorrelation exponent γ is related to the
Hurst index H by γ = 2 − 2H [25,26], and the power
spectrum exponent η is given by η = 2H − 1 [27,28].

There are many methods proposed for estimating
the Hurst index such as the rescaled range analysis
(RSA) [29–34], fluctuation analysis (FA) [35], detrended
fluctuation analysis (DFA) [24,25,36], wavelet transform
module maxima (WTMM) method [37–41], detrended
moving average (DMA) [42–46], to list a few. We adopt
the detrended fluctuation analysis.

The method of detrended fluctuation analysis is widely
used for its easy implementation and robust estimation
even for a short time series [28,47–49]. The idea of DFA
was invented originally to investigate the long-range de-
pendence in coding and noncoding DNA nucleotides se-
quence [36] and then applied to various fields including
finance. In this work, we adopted the linear polynomial
function to represent the trend in detrending step. Vary-
ing the segment size �, we can determine the scaling rela-
tion between the detrended fluctuation function F (�) and
the size scale �, which reads

F (�) ∼ �H , (6)

where H is the Hurst index of the time series [47,25].
Figure 5 plots the detrended fluctuation function F (�)

of the bid-ask spreads from different definitions using lin-
ear prices. The bottom F (�) curve is for the average
spread after removing the intraday pattern. All the curves
show evident power-law scaling with the Hurst indexes
HI = 0.91 ± 0.01 for definition I, HII = 0.92 ± 0.01 for
definition II, HIII = 0.75 ± 0.01 for definition III, and
HIII = 0.77 ± 0.01 for definition without intraday pat-
tern, respectively. Quite similar results are obtain for log-
arithmic prices where HI = 0.89 ± 0.01 for definition I,
HII = 0.91 ± 0.01 for definition II, HIII = 0.77 ± 0.01
for definition III, and HIII = 0.76 ± 0.01 for definition III
without intraday pattern. The two Hurst indexes for defi-
nitions I and II are higher than their counterparts on the
London Stock Exchange where “event time” is adopted [9].
It is interesting to note that the presence of intraday pat-
tern does not introduce distinguishable difference in the
Hurst index and the two indexes for definition III are also
very close to those of average spreads in the Brazilian
stock market and on the New York Stock Exchange where
real time is used [15,16]. Due to the large number of data
used in the analysis, we argue that the bid-ask spreads
investigated exhibit significant long memory.

6 Multifractal analysis

In this section, we investigate whether the time series of
bid-ask spread obtained from definition III possesses mul-
tifractal nature. The classical box-counting algorithm for
multifractal analysis is utilized and described below [50].

Consider the spread time series S(t), t = 1, 2, ..., N .
First, we divide the series S(t) into N� disjoint segments
with the same length �, where N� = [N/�]. Each seg-
ment can be denoted as Sv such that Sv(i) = S(l + i)
for 1 � i � �, and l = (v − 1)�. The sum of Sv in each
segment is calculated as follows,

Γ (v, �) =
�∑

i=1

Sv(i), v = 1, 2, ..., N�. (7)

We can then calculate the qth order partition function
Γ (q; �) as follows,

Γ (q; �) =
N�∑

v=1

[Γ (v, �)]q. (8)
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Varying the value of �, we can determine the scaling rela-
tion between the partition function Γ (q; �) and the time
scale �, which reads

Γ (q; �) ∼ �τ(q). (9)

Figure 6 illustrates the power-law scaling dependence of
the partition function Γ (q; �) of the bid-ask spreads after
removing the intraday pattern in definition III for differ-
ent values of q, where both linear prices and logarithmic
prices are investigated. The continuous lines are the best
linear fits to the data sets. The collapse of the data points
on the linear lines indicates evident power-law scaling be-
tween Γ (q; �) and �. The slopes τ(q) of the fitted lines are
τ(−4) = −5.02 ± 0.01, τ(−2) = −3.01 ± 0.01, τ(0) =
−1.01 ± 0.01, τ(2) = 0.99 ± 0.01, and τ(4) = 2.98 ± 0.01
for logarithmic prices and τ(−4) = −5.02 ± 0.01, τ(−2) =
−3.01 ± 0.01, τ(0) = −1.01 ± 0.01, τ(2) = 0.99 ± 0.01,
and τ(4) = 2.98 ± 0.01 for linear prices. We notice a nice
relation τ(q) = q − 1.

Quantitatively similar results are obtained when the
intraday pattern is not removed. The scaling exponents
are τ(−4) = −5.03 ± 0.01, τ(−2) = −3.01 ± 0.01, τ(0) =
−1.01 ± 0.01, τ(2) = 0.99 ± 0.01, and τ(4) = 2.96 ± 0.01
for logarithmic prices and τ(−4) = −5.03 ± 0.01, τ(−2) =
−3.02 ± 0.01, τ(0) = −1.01 ± 0.01, τ(2) = 0.99 ± 0.01,
and τ(4) = 2.97 ± 0.01 for linear prices. Again, we observe
that τ(q) = q − 1.

In the standard multifractal formalism based on parti-
tion function, the multifractal nature is characterized by
the scaling exponents τ(q). It is easy to obtain the gener-
alized dimensions Dq = τ(q)/(q − 1) [51–53] and the sin-
gularity strength function α(q), the multifractal spectrum
f(α) via the Legendre transform [50]: α(q) = dτ(q)/dq
and f(q) = qα − τ(q).

Figure 7 shows the multifractal spectrum f(α) and the
scaling function τ(q) in the inset for linear and logarith-
mic prices. One finds that the two τ(q) curves are linear
and τ(q) = q − 1, which is the hallmark of the presence
of monofractality, not multifractality. The strength of the
multifractality can be characterized by the span of sin-
gularity ∆α = αmax − αmin. If ∆α is close to zero, the
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Fig. 6. Log-log plots of the partition function Γ (q; �) of the
bid-ask spreads calculated from definition III with the intraday
pattern removed for five different values of q. Both linear and
logarithmic prices are investigated (shown in the legend). The
markers stand for the results calculated from the real data and
the continuous lines are the best fits. The plots for q = −2, 0, 2,
and 4 are shifted upwards for clarity.

measure is almost monofractal. The maximum and min-
imum of α can be reached when q → ±∞, which can
not be achieved in real applications. However, ∆α can
be approximated with great precision with mediate values
of q. The small value of ∆α shown in Figure 7 indicates a
very narrow spectrum of singularity. Indeed, one sees that
f(α) ≈ 1 and α ≈ 1 for all values of q. We thus conclude
that there is no multifractal nature in the bid-ask spread
investigated. It is important to point out that multifrac-
tal nature might well be in store if we turn to investigate
other quantities on which the structure function approach
is based, such as the generalized Hurst analysis [54,55]. A
detailed analysis is beyond the scope of this work and we
will report the results elsewhere.

7 Conclusions

The bid-ask spread defined by the difference of the best
ask price and the best bid price is considered as the bench-
mark of the transaction cost and a measure of the mar-
ket liquidity. In this paper, we have carried out empirical
investigations on the statistical properties of the bid-ask
spread using the limit-order book data of a stock SZ000001
(Shenzhen Development Bank Co., LTD) traded on the
Shenzhen Stock Exchange within the whole year of 2003.
Three different definitions of spread are considered based
on event time at transaction level and on fixed interval of
real time.

The distributions of spreads at transaction level decay
as power laws with tail exponents well below 3. In contrast
the average spread in real time fulfils the inverse cubic law
for different time intervals ∆t = 1, 2, 3, 4, and 5 min. We
have performed the detrended fluctuation analysis on the
spread and found that the spread time series exhibits evi-
dent long-memory, which is in agreement with other stock
markets. However, an analysis using the classic textbook
box-counting algorithm does not provide evidence for the
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Fig. 7. Multifractal function f(α) of the spreads in definition
III with the intraday pattern removed. Inset: scaling exponents
τ (q) of partition functions as a function of q. For clarity, the
τ (q) curve for logarithmic price is shifted upwards by 1.

presence of multifractality in the spread time series. To
the best of our knowledge, this is the first time to check
the presence of multifractality in the spread.

Our analysis raises an intriguing open question that is
not fully addressed. We have found that the spread pos-
sesses a well-established intraday pattern composed by a
large L-shape and a small L-shape separated by the noon
closing of the Chinese stock market. This feature will help
to understand the cause of the wide spread at the opening
of the market, which deserves further investigation.
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3515 (1991)
39. J.F. Muzy, E. Bacry, A. Arnéodo, J. Stat. Phys. 70, 635
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